Multiple Regression Analysis: Estimation. Wooldridge (2013), Chapter 3

- Ordinary Least Squares (OLS) Estimator
- Interpreting Multiple Regression
- A "Partialling Out" Interpretation of the OLS estimator -Frisch-Waugh (1933) Theorem
- Simple vs Multiple Regression Estimate
- The R-squared
- Unbiasedness of the OLS estimator
- Too Many or Too Few Variables
- Variance of the OLS Estimators

The Multiple Regression model takes the form

$$E(y|x_1,...,x_k) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

or equivalently

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u,$$

where $E(u|x_1, ..., x_k) = 0$. Parallels with Simple Regression:

- *y* is the dependent variable (regressand).
- $x_1, ..., x_k$ are the *k* regressors.
- *u* is still the error term (or disturbance).
- β_0 is still the intercept.
- β_1 to β_k all called slope parameters.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u,$$

where $E(u|x_1, ..., x_k) = 0.$

Examples:

- *y*-sales, the regressors are advertising expenditure, income, price relative to competitors.
- *y* personal consumption, the regressors are disposable income, wealth, interest rates.
- *y* Investment, the regressors are interest rates and profits (past and future).
- *y* Wages, the regressors are schooling, experience, ability and gender.

◆ロト ◆課 と ◆注 と ◆注 と 一注

Ordinary Least Squares (OLS) Estimator

To estimate $\beta_0, \beta_1, \beta_2, ..., \beta_k$ we choose $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_k$ that minimize

$$S(\hat{\beta}_{0},\hat{\beta}_{1},\hat{\beta}_{2},...,\hat{\beta}_{k}) = \frac{1}{n}\sum_{i=1}^{n} (y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i1}-\hat{\beta}_{2}x_{i2}-...-\hat{\beta}_{k}x_{ik})^{2}$$

The first order conditions are

$$-\frac{2}{n}\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i1}-\hat{\beta}_{2}x_{i2}-...-\hat{\beta}_{k}x_{ik}) = 0$$

$$-\frac{2}{n}\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i1}-\hat{\beta}_{2}x_{i2}-...-\hat{\beta}_{k}x_{ik})x_{ij} = 0$$

$$j = 1,...,k$$

This is a system of equations with k + 1 equations and k + 1 variables: β₀, β₁, β₂, ..., β_k. The Ordinary Least Squares estimator is obtained by solving the system of equations for β₀, β₁, β₂, ..., β_k.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Ordinary Least Squares (OLS) Estimator

The first order conditions can be written as

$$-\frac{2}{n}\sum_{i=1}^{n}\hat{u}_{i} = 0, \qquad (1)$$

$$-\frac{2}{n}\sum_{i=1}^{n}\hat{u}_{i}x_{ij} = 0, \qquad (2)$$

$$j = 1, ..., k,$$

where $\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_k x_{ik}$.(*residuals*) **Remarks:**

- Beyond the two-variable case it is not possible to write out an explicit formula for the OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_k$ (without the use of matrix algebra), although a solution exists.
- Equation (1) implies that the sum and the mean of the residuals are zero.
- Equations (1) and (2) imply that the covariances between the residuals and each regressor are zero.

Interpreting Multiple Regression

The OLS regression line (fitted values) is now defined as

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \ldots + \hat{\beta}_k x_k.$$

Writing it in terms of changes we obtain

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2 + \dots + \hat{\beta}_k \Delta x_k.$$

Holding x_i , i = 1, ...k and $i \neq j$ fixed implies that

$$\Delta \hat{y} = \hat{\beta}_j \Delta x_j,$$

j = 1, ..., k. Thus each β has a ceteris paribus interpretation.

(ロ) (部) (注) (注)

A Note on Terminology

• In most cases, we will indicate the estimation of a relationship through OLS by writing as

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k.$$
(3)

- Sometimes, for the sake of brevity, it is useful to indicate that an OLS regression has been run without actually writing out the equation.
- We will often indicate that equation (3) has been obtained by OLS in saying that we run the regression of *y* on *x*₁, *x*₂, ..., *x*_k

(4回) (1日) (日)

Interpreting Multiple Regression

• Regression of Wages on years of Education and years of Work Experience:

Dependent variable: Wages

Estimation Method: Ordinary Least Squares

Regressors	Estimates
Intercept	-5.56732
Education	0.97685
Experience	0.10367

- Another year of Education is predicted to increase the mean of wages by \$0.97685, holding Experience fixed.
- Another year of Experience is predicted to increase the mean of wages by \$0.10367, holding Education fixed.

Multiple Regression Analysis: Estimation

A "Partialling Out" Interpretation - Frisch-Waugh (1933) Theorem

Consider the case k = 2, i.e.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2.$$

There is an interesting interpretation for $\hat{\beta}_1$:

- Let \hat{r}_{i1} be the residuals from the regression of x_1 on x_2 . The fitted values are $\hat{x}_1 = \hat{\gamma}_0 + \hat{\gamma}_2 x_2$.
- Notice that for i = 1, ..., n

$$x_{i1} = \underbrace{\hat{x}_{i1}}_{\text{part of } x_1 \text{ that can}} + \underbrace{\hat{r}_{i1}}_{\text{part of } x_1 \text{ that cannot}}$$

$$\begin{array}{c} \hat{r}_{i1} \\ \text{part of } x_1 \text{ that cannot} \\ \text{be explained by } x_2 \end{array}$$

• It can be shown that the OLS estimator for β_1 , $\hat{\beta}_1$, is equal to the estimator of the slope when we run a regression of y_i on \hat{r}_{i1} . That is

$$\hat{\beta}_1 = rac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2}.$$

イロト イヨト イヨト イヨト

Multiple Regression Analysis: Estimation A "Partialling Out" Interpretation - Frisch-Waugh (1933) Theorem

• It can be shown that the OLS estimator for β_1 , $\hat{\beta}_1$, is equal to the estimator of the slope when we run a regression of y_i on \hat{r}_{i1} . That is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2},$$

- What is the interpretation of this?
- We're estimating the effect of *x*₁ on *y* after removing from *x*₁ the effect of *x*₂.

Simple vs Multiple Regression Estimate

Compare the simple regression

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

with the multiple regression

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2.$$

Generally $\tilde{\beta}_1 \neq \hat{\beta}_1$ unless $\hat{\beta}_2 = 0$ (i.e. no partial effect of x_2) or x_1 and x_2 are uncorrelated in the sample.

Simple vs Multiple Regression Estimate

Example:

• Regression of Wages on Education

Dependent valiable: Wages

Estimation Method: Ordinary Least Squares, sample size: 528

Regressors	Estimates
Intercept	-1.60468
Education	0.81395

• Regression of Wages on Education and Experience

Dependent valiable: Wages

Estimation Method: Ordinary Least Squares, sample size: 528

Regressors	Estimates
Intercept	-5.56732
Education	0.97685
Experience	0.10367

Goodness-of-Fit

As in the simple regression model we can think of each observation as being made up of an explained part, and an unexplained part, $y_i = \hat{y}_i + \hat{u}_i$. We then define the following:

- $\sum_{i=1}^{n} (y_i \bar{y})^2$ is the *total sum of squares* (SST).
- $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ is the *explained sum of squares (SSE)*.
- $\sum_{i=1}^{n} \hat{u}_i^2$ is the *residual sum of squares* (SSR).

(Same definitions as in the linear regression model) Then

$$SST = SSE + SSR.$$

Prove this result in the simple regression model!

Goodness-of-Fit

Proof:

Recall that in the simple regression model we had

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0,$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0.$$

But since $\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$, we have

$$\frac{1}{n}\sum_{i=1}^{n}\hat{u}_{i} = 0,$$

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\hat{u}_{i} = 0.$$

ヘロト 人間 とくほとくほとう

Goodness-of-Fit

By definition, we have

$$\hat{u}_i = y_i - \hat{y}_i,$$

 $y_i = \hat{y}_i + \hat{u}_i.$

Therefore

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i + \frac{1}{n} \sum_{i=1}^{n} \hat{u}_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i = \bar{y}$$

because $\frac{1}{n}\sum_{i=1}^{n} \hat{u}_i = 0$ and $\overline{\hat{y}}$ is the average of the fitted values.

★ E ► < E ► ...</p>

Goodness-of-Fit

We prove now that

$$\sum_{i=1}^n \hat{u}_i \hat{y}_i = 0.$$

Notice that $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, therefore

$$\begin{split} \sum_{i=1}^{n} \hat{u}_{i} \left(\hat{\beta}_{0} + \hat{\beta}_{1} x_{i} \right) &= \sum_{i=1}^{n} \left(\hat{\beta}_{0} \hat{u}_{i} + \hat{\beta}_{1} x_{i} \hat{u}_{i} \right) \\ &= \sum_{i=1}^{n} \hat{\beta}_{0} \hat{u}_{i} + \sum_{i=1}^{n} \hat{\beta}_{1} x_{i} \hat{u}_{i} \\ &= \hat{\beta}_{0} \sum_{i=1}^{n} \hat{u}_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} \hat{u}_{i} \\ &= 0 \end{split}$$

because $\sum_{i=1}^{n} \hat{u}_i = 0$ and $\sum_{i=1}^{n} x_i \hat{u}_i = 0$.

御 とくきとくきとう

Goodness-of-Fit

Now we are going to prove that

$$SST = SSE + SSR,$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{u}_i^2$$

Given that $y_i = \hat{y}_i + \hat{u}_i$, we have

$$\begin{split} \sum_{i=1}^{n} \left(y_{i} - \bar{y}\right)^{2} &= \sum_{i=1}^{n} \left(\hat{y}_{i} + \hat{u}_{i} - \bar{y}\right)^{2} \\ &= \sum_{i=1}^{n} \left[\left(\hat{y}_{i} - \bar{y}\right) + \hat{u}_{i}\right]^{2} \\ &= \sum_{i=1}^{n} \left[\left(\hat{y}_{i} - \bar{y}\right)^{2} + \hat{u}_{i}^{2} + 2\left(\hat{y}_{i} - \bar{y}\right)\hat{u}_{i}\right] \\ &= \sum_{i=1}^{n} \left(\hat{y}_{i} - \bar{y}\right)^{2} + \sum_{i=1}^{n} \hat{u}_{i}^{2} + \sum_{i=1}^{n} 2\left(\hat{y}_{i} - \bar{y}\right)\hat{u}_{i} \end{split}$$

Goodness-of-Fit

Now notice that

$$\sum_{i=1}^{n} 2(\hat{y}_{i} - \bar{y}) \hat{u}_{i} = 2\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y}) \hat{u}_{i}$$

$$= 2\sum_{i=1}^{n} (\hat{y}_{i}\hat{u}_{i} - \bar{y}\hat{u}_{i})$$

$$= 2\left(\sum_{i=1}^{n} \hat{y}_{i}\hat{u}_{i} - \sum_{i=1}^{n} \bar{y}\hat{u}_{i}\right)$$

$$= 2\left(\sum_{i=1}^{n} \hat{y}_{i}\hat{u}_{i} - \bar{y}\sum_{i=1}^{n} \hat{u}_{i}\right)$$

$$= 0$$

because $\sum_{i=1}^{n} \hat{y}_i \hat{u}_i = 0$ and $\sum_{i=1}^{n} \hat{u}_i = 0$.

Ξ

ヘロト 人間 とくほ とくほとう

Goodness-of-Fit

• Can compute the fraction of the total sum of squares (*SST*) that is explained by the model, call this the *R*-squared of regression:

$$R^2 = SSE/SST = 1 - SSR/SST,$$

where

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
, $SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$, $SSR = \sum_{i=1}^{n} \hat{u}_i^2$.

- *R*² is a measure of *Goodness of fit*: proportion of the variance of the dependent variable that is explained by the model.
- The *R*² is called the *coefficient of determination*.
- $0 \le R^2 \le 1$.

It can be shown that R^2 is equal to the squares of the correlation between \hat{y} and y

$$R^{2} = \frac{\left[\sum_{i=1}^{n} \left(\hat{y}_{i} - \bar{y}\right) (y_{i} - \bar{y})\right]^{2}}{\sum_{i=1}^{n} \left(\hat{y}_{i} - \bar{y}\right)^{2} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

(also valid for the simple regression model). It can also be shown that $\bar{y} = \bar{y}$.

More about R-squared

- *R*² can never decrease when another independent variable is added to a regression, and usually will increase.
- Because *R*² will usually increase with the number of independent variables, it is not a good way to compare models.
- An alternative measure usually reported by any statistical software is the *adjusted R-squared*:

$$\bar{R}^2 = 1 - \frac{SSR/(n-k-1)}{SST/(n-1)}$$
$$= 1 - \frac{(n-1)}{(n-k-1)}(1-R^2)$$

- \bar{R}^2 penalizes the number of regressors included.
- However, \bar{R}^2 , is not not between 0 and 1. In fact, it can be negative.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

More about R-squared

Example: Regression of Wages on Education and Experience

Dependent valiable: Wages

Estimation Method: Ordinary Least Squares, sample size: 528

Regressors	Estimates
Intercept	-5.56732
Education	0.97685
Experience	0.10367

 $R^2 = 0.209, \ \bar{R}^2 = 0.206$

Assumptions for Unbiasedness

- Population model is linear in parameters: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u.$
- We can use a random sample of size
 n,{(x_{i1}, x_{i2},..., x_{ik}, y_i) : i = 1, 2, ..., n}, from the population model, so that the sample model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + u_i.$$

- $E(u|x_1, x_2, ..., x_k) = 0$, implying that all of the explanatory variables are exogenous.
- None of the *x*'s is constant, and there are no exact linear relationships among them (no perfect *multicolinearity*).

Proposition

Under the above assumptions the OLS estimators for $\beta_0,\,\beta_1,...\beta_k$ are unbiased, that is

$$E\left(\hat{\beta}_{j}\right)=\beta_{j}, j=1,...,k.$$

(prove this result in the simple regression model).

Unbiasedness

Proof:

Recall that in the simple regression model we had

$$egin{array}{rcl} \hat{eta}_{0} &=& ar{y} - \hat{eta}_{1}ar{x}, \ \hat{eta}_{1} &=& rac{\sum_{i=1}^{n} \left(x_{i} - ar{x}
ight) \left(y_{i} - ar{y}
ight)}{\sum_{i=1}^{n} \left(x_{i} - ar{x}
ight)^{2}}, \end{array}$$

We proved before that $\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - \bar{x}) x_i$. We prove now that $\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x}) y_i$. Notice that

$$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} [(x_i - \bar{x}) y_i - (x_i - \bar{x}) \bar{y}]$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x}) y_i - \sum_{i=1}^{n} (x_i - \bar{x}) \bar{y}$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x}) y_i - \bar{y} \sum_{i=1}^{n} (x_i - \bar{x})$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x}) y_i$$

because, as we proved before, $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$.

Unbiasedness

Therefore

$$\hat{\beta}_1 = rac{\sum_{i=1}^n (x_i - \bar{x}) y_i}{\sum_{i=1}^n (x_i - \bar{x}) x_i}$$

Recall that in the simple regression model we have

$$y_i = \beta_0 + \beta_1 x_i + u_i, i = 1, ..., n$$

 $E(u_i|x_i) = 0.$

We have to prove that $E(\hat{\beta}_1) = \beta_1$ and $E(\hat{\beta}_0) = \beta_0$ Write $\tilde{x} = (x_1, x_2, ..., x_n)$, therefore by the law of iterated expectations we have

$$E\left(\hat{\beta}_{1}\right) = E\left(E\left(\hat{\beta}_{1}|\tilde{x}\right)\right)$$

Unbiasedness

Now

$$E(\hat{\beta}_{1}|\tilde{x}) = E\left(\frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}}|\tilde{x}\right)$$

$$= \frac{1}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}} E\left(\sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}|\tilde{x}\right)$$

$$= \frac{1}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}} \sum_{i=1}^{n} E\left((x_{i} - \bar{x}) y_{i}|\tilde{x}\right)$$

$$= \frac{1}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}} \sum_{i=1}^{n} (x_{i} - \bar{x}) E\left(y_{i}|\tilde{x}\right)$$

and $E(y_i|\tilde{x}) = E(y_i|x_1, x_2, ..., x_i, ..., x_n) = E(y_i|x_i)$ because y_i is independent from x_j for $j \neq i$ as we assumed that we use a random sample $\{(x_i, y_i)\}_{i=1}^n$

Unbiasedness

Now notice that $E(y_i|x_i) = \beta_0 + \beta_1 x_i$, therefore

$$E(\hat{\beta}_{1}|\tilde{x}) = \frac{1}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}} \sum_{i=1}^{n} (x_{i} - \bar{x}) (\beta_{0} + \beta_{1}x_{i})$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) \beta_{0} + \sum_{i=1}^{n} (x_{i} - \bar{x}) \beta_{1}x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}}$$

$$= \frac{\beta_{0} \sum_{i=1}^{n} (x_{i} - \bar{x}) + \beta_{1} \sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}}$$

$$= \frac{\beta_{1} \sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}}$$

therefore

$$E(\hat{\beta}_1) = E(E(\hat{\beta}_1|\tilde{x}))$$
$$= E(\beta_1)$$
$$= \beta_1$$

(ロ) (部) (注) (注)

Unbiasedness

Concerning the estimator of the intercept parameter notice that, by the law of iterated expectations, we have

$$E\left(\hat{\beta}_{0}\right) = E\left(E\left(\hat{\beta}_{0}|\tilde{x}\right)\right)$$

Also

$$E(\hat{\beta}_0|\tilde{x}) = E(\bar{y} - \hat{\beta}_1 \bar{x}|\tilde{x})$$

$$= E(\bar{y}|\tilde{x}) - E(\hat{\beta}_1 \bar{x}|\tilde{x})$$

$$= E(\bar{y}|\tilde{x}) - E(\hat{\beta}_1|\tilde{x}) \bar{x}$$

Unbiasedness

$$E\left(\bar{y}|\tilde{x}\right) = E\left(\frac{1}{n}\sum_{i=1}^{n}y_{i}|\tilde{x}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left(y_{i}|\tilde{x}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(\beta_{0}+\beta_{1}x_{i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\beta_{0}+\frac{1}{n}\sum_{i=1}^{n}\beta_{1}x_{i}$$

$$= \frac{1}{n}\left(\underbrace{\beta_{0}+\beta_{0}+\ldots+\beta_{0}}_{\times n}\right)+\beta_{1}\frac{1}{n}\sum_{i=1}^{n}x_{i}$$

$$= \frac{n}{n}\beta_{0}+\beta_{1}\bar{x}$$

$$= \beta_{0}+\beta_{1}\bar{x}$$

Э

イロト イポト イヨト イヨト

Unbiasedness

Therefore

$$E\left(\hat{\beta}_{0}|\tilde{x}\right) = \beta_{0} + \beta_{1}\bar{x} - \beta_{1}\bar{x}$$
$$= \beta_{0}$$

therefore

$$E(\hat{\beta}_0) = E(E(\hat{\beta}_0|\tilde{x}))$$
$$= E(\beta_0)$$
$$= \beta_0$$

29 / 37

→ 프 →

Image: Image:

Too Many or Too Few Variables

- What happens if we include variables in our specification that don't belong?
- There is no effect on our parameter estimate, and OLS remains unbiased.
- What if we exclude a variable from our specification that does belong?
- OLS will usually be biased.

30/37

Too Many or Too Few Variables

Suppose that we know that the model is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

where $E(u|x_1, x_2) = 0$ but we estimate $\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$.

• As it was shown before

$$\tilde{\beta}_1 = \frac{\sum_{i=1}^n (x_{i1} - \bar{x}_1) y_i}{\sum_{i=1}^n (x_{i1} - \bar{x}_1)^2}.$$

• Then conditional on the regressors

$$E(\tilde{\beta}_{1}) = \beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

= $\beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) (x_{i2} - \bar{x}_{2})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$

as we can show that

$$\sum_{i=1}^{n} \left(x_{i1} - \bar{x}_1 \right) x_{i2} = \sum_{i=1}^{n} \left(x_{i1} - \bar{x}_1 \right) \left(x_{i2} - \bar{x}_2 \right)_{\text{total states}}.$$

Too Many or Too Few Variables

Thus

$$E(\tilde{\beta}_{1}) = \beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) (x_{i2} - \bar{x}_{2})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

$$= \beta_{1} + \beta_{2} \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) (x_{i2} - \bar{x}_{2})}{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

$$= \beta_{1} + \beta_{2} \frac{S_{x_{1},x_{2}}}{S_{x_{1}}^{2}}.$$

where S_{x_1,x_2} is the sample covariance between x_1 and x_2 and $S_{x_1}^2$ is the sample variance of x_1 .

(ロ) (部) (注) (注)

Too Many or Too Few Variables

$$E(\tilde{\beta}_{1}) = \beta_{1} + \beta_{2} \frac{S_{x_{1},x_{2}}}{S_{x_{1}}^{2}}$$

$$= \beta_{1} + \beta_{2} \frac{S_{x_{1},x_{2}}}{S_{x_{2}}S_{x_{1}}} \frac{S_{x_{2}}}{S_{x_{1}}}$$

$$= \beta_{1} + \beta_{2} Corr(x_{1},x_{2}) \frac{S_{x_{2}}}{S_{x_{1}}}$$

Summary of Direction of Bias

	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$
$\beta_2 > 0$	Positive Bias	Negative Bias
$\beta_2 < 0$	Negative Bias	Positive Bias

Omitted Variable Bias Summary

- Two cases where bias is equal to zero:
 - $\beta_2 = 0$, that is x_2 doesn't really belong in model.
 - *x*₁ and *x*₂ are uncorrelated in the sample.
- If $corr(x_2, x_1)$ and β_2 have the same sign, bias will be positive.
- If $corr(x_2, x_1)$ and β_2 have the opposite sign, bias will be negative.
- The More General Case: Technically, can only obtain the sign of the bias for the more general case if all of the included *x*'s are uncorrelated.

Variance of the OLS Estimators

The Variance-covariance matrix of the OLS estimator $(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k)$ has the form:

$$\begin{bmatrix} Var(\hat{\beta}_{0}) & Cov(\hat{\beta}_{0},\hat{\beta}_{1}) & \dots & Cov(\hat{\beta}_{0},\hat{\beta}_{k}) \\ Cov(\hat{\beta}_{0},\hat{\beta}_{1}) & Var(\hat{\beta}_{1}) & \dots & Cov(\hat{\beta}_{1},\hat{\beta}_{k}) \\ \vdots & \vdots & \vdots & \vdots \\ Cov(\hat{\beta}_{0},\hat{\beta}_{k}) & Cov(\hat{\beta}_{1},\hat{\beta}_{k}) & \dots & Var(\hat{\beta}_{k}) \end{bmatrix}$$

Variance of the OLS Estimators

- Let **x** stand for $(x_1, x_2, \ldots x_k)$.
- Assume $Var(u|\mathbf{x}) = \sigma^2$ (Homoskedasticity).
- Assuming that $Var(u|\mathbf{x}) = \sigma^2$ also implies that $Var(y|\mathbf{x}) = \sigma^2$.
- The 4 assumptions for unbiasedness, plus this homoskedasticity assumption are known as the Gauss-Markov assumptions.

Variance of the OLS Estimators

Given the Gauss-Markov Assumptions

$$Var(\hat{\beta}_j) = rac{\sigma^2}{SST_j \left(1 - R_j^2\right)},$$

where the $SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$ and R_j^2 is the R^2 from the regressing x_i on all other x's.

Components of OLS Variances:

- The error variance: a larger σ^2 implies a larger variance for the OLS estimators.
- The total sample variation: a larger *SST_j* implies a smaller variance for the estimators.
- Linear relationships among the independent variables: a larger R_i^2 implies a larger variance for the estimators.

37 / 37