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Multiple Regression Analysis

The Multiple Regression model takes the form

E (y|x1, ..., xk) = β0 + β1x1 + β2x2 + ... + βkxk

or equivalently

y = β0 + β1x1 + β2x2 + ... + βkxk + u,

where E (u|x1, ..., xk) = 0.
Parallels with Simple Regression:

y is the dependent variable (regressand).
x1, ..., xk are the k regressors.
u is still the error term (or disturbance).
β0 is still the intercept.
β1 to βk all called slope parameters.
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Multiple Regression Analysis

y = β0 + β1x1 + β2x2 + ... + βkxk + u,

where E (u|x1, ..., xk) = 0.

Examples:
y−sales, the regressors are advertising expenditure, income,
price relative to competitors.
y− personal consumption, the regressors are disposable income,
wealth, interest rates.
y− Investment, the regressors are interest rates and profits (past
and future).
y− Wages, the regressors are schooling, experience, ability and
gender.
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Multiple Regression Analysis
Ordinary Least Squares (OLS) Estimator

To estimate β0, β1, β2, ..., βk we choose β̂0, β̂1, β̂2, ..., β̂k that minimize

S
(

β̂0, β̂1, β̂2, ..., β̂k
)
=

1
n ∑n

i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ... − β̂kxik

)2

The first order conditions are

− 2
n ∑n

i=1(yi − β̂0 − β̂1xi1 − β̂2xi2 − ... − β̂kxik) = 0

− 2
n ∑n

i=1(yi − β̂0 − β̂1xi1 − β̂2xi2 − ... − β̂kxik)xij = 0

j = 1, ..., k

This is a system of equations with k + 1 equations and k + 1
variables: β̂0, β̂1, β̂2, ..., β̂k. The Ordinary Least Squares estimator
is obtained by solving the system of equations for β̂0, β̂1, β̂2, ..., β̂k.
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Multiple Regression Analysis
Ordinary Least Squares (OLS) Estimator

The first order conditions can be written as

− 2
n ∑n

i=1 ûi = 0, (1)

− 2
n ∑n

i=1 ûixij = 0, (2)

j = 1, ..., k,

where ûi = yi − β̂0 − β̂1xi1 − β̂2xi2 − ... − β̂kxik.(residuals)
Remarks:

Beyond the two-variable case it is not possible to write out an
explicit formula for the OLS estimators β̂0, β̂1, β̂2, ..., β̂k (without
the use of matrix algebra), although a solution exists.
Equation (1) implies that the sum and the mean of the residuals
are zero.
Equations (1) and (2) imply that the covariances between the
residuals and each regressor are zero.
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Multiple Regression Analysis
Interpreting Multiple Regression

The OLS regression line (fitted values) is now defined as

ŷ = β̂0 + β̂1x1 + β̂2x2 + ... + β̂kxk.

Writing it in terms of changes we obtain

∆ŷ = β̂1∆x1 + β̂2∆x2 + ... + β̂k∆xk.

Holding xi ,i = 1, ...k and i ̸= j fixed implies that

∆ŷ = β̂j∆xj,

j = 1, ..., k. Thus each β has a ceteris paribus interpretation.
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Multiple Regression Analysis
A Note on Terminology

In most cases, we will indicate the estimation of a relationship
through OLS by writing as

ŷ = β̂0 + β̂1x1 + β̂2x2 + ... + β̂kxk. (3)

Sometimes, for the sake of brevity, it is useful to indicate that an
OLS regression has been run without actually writing out the
equation.
We will often indicate that equation (3) has been obtained by
OLS in saying that we run the regression of y on x1, x2, ..., xk
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Multiple Regression Analysis
Interpreting Multiple Regression

Regression of Wages on years of Education and years of Work
Experience:

Dependent variable: Wages
Estimation Method: Ordinary Least Squares

Regressors Estimates
Intercept −5.56732

Education 0.97685
Experience 0.10367

Another year of Education is predicted to increase the mean of
wages by $0.97685, holding Experience fixed.
Another year of Experience is predicted to increase the mean of
wages by $0.10367, holding Education fixed.

8 / 37



Multiple Regression Analysis: Estimation
A “Partialling Out” Interpretation - Frisch-Waugh (1933) Theorem

Consider the case k = 2, i.e.

ŷ = β̂0 + β̂1x1 + β̂2x2.

There is an interesting interpretation for β̂1 :
Let r̂i1 be the residuals from the regression of x1 on x2. The fitted
values are x̂1 = γ̂0 + γ̂2x2.
Notice that for i = 1, ..., n

xi1 = x̂i1︸︷︷︸
part of x1 that can
be explained by x2

+ r̂i1︸︷︷︸
part of x1 that cannot

be explained by x2

It can be shown that the OLS estimator for β1, β̂1, is equal to the
estimator of the slope when we run a regression of yi on r̂i1. That
is

β̂1 =
∑n

i=1 r̂i1yi

∑n
i=1 r̂2

i1
.
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Multiple Regression Analysis: Estimation
A “Partialling Out” Interpretation - Frisch-Waugh (1933) Theorem

It can be shown that the OLS estimator for β1, β̂1, is equal to the
estimator of the slope when we run a regression of yi on r̂i1. That
is

β̂1 =
∑n

i=1 r̂i1yi

∑n
i=1 r̂2

i1
,

What is the interpretation of this?
We’re estimating the effect of x1 on y after removing from x1 the
effect of x2.
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Multiple Regression Analysis
Simple vs Multiple Regression Estimate

Compare the simple regression

ỹ = β̃0 + β̃1x1

with the multiple regression

ŷ = β̂0 + β̂1x1 + β̂2x2.

Generally β̃1 ̸= β̂1 unless β̂2 = 0 (i.e. no partial effect of x2) or x1 and
x2 are uncorrelated in the sample.
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Multiple Regression Analysis
Simple vs Multiple Regression Estimate

Example:
Regression of Wages on Education

Dependent valiable: Wages
Estimation Method: Ordinary Least Squares, sample size: 528

Regressors Estimates
Intercept −1.60468

Education 0.81395

Regression of Wages on Education and Experience

Dependent valiable: Wages
Estimation Method: Ordinary Least Squares, sample size: 528

Regressors Estimates
Intercept −5.56732

Education 0.97685
Experience 0.10367
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Multiple Regression Analysis
Goodness-of-Fit

As in the simple regression model we can think of each observation
as being made up of an explained part, and an unexplained part,
yi = ŷi + ûi.
We then define the following:

∑n
i=1 (yi − ȳ)2 is the total sum of squares (SST).

∑n
i=1 (ŷi − ȳ)2 is the explained sum of squares (SSE).

∑n
i=1 û2

i is the residual sum of squares (SSR).
(Same definitions as in the linear regression model)
Then

SST = SSE + SSR.

Prove this result in the simple regression model!
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Multiple Regression Analysis
Goodness-of-Fit

Proof:
Recall that in the simple regression model we had

1
n ∑n

i=1(yi − β̂0 − β̂1xi) = 0,

1
n ∑n

i=1 xi(yi − β̂0 − β̂1xi) = 0.

But since ûi = yi − β̂0 − β̂1xi, we have

1
n ∑n

i=1 ûi = 0,

1
n ∑n

i=1 xiûi = 0.
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Multiple Regression Analysis
Goodness-of-Fit

By definition, we have

ûi = yi − ŷi,
yi = ŷi + ûi.

Therefore

ȳ =
1
n ∑n

i=1 yi =
1
n ∑n

i=1 ŷi +
1
n ∑n

i=1 ûi

=
1
n ∑n

i=1 ŷi = ŷ

because 1
n ∑n

i=1 ûi = 0 and ŷ is the average of the fitted values.
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Multiple Regression Analysis
Goodness-of-Fit

We prove now that

∑n
i=1 ûiŷi = 0.

Notice that ŷi = β̂0 + β̂1xi, therefore

∑n
i=1 ûi

(
β̂0 + β̂1xi

)
= ∑n

i=1

(
β̂0ûi + β̂1xiûi

)
= ∑n

i=1 β̂0ûi + ∑n
i=1 β̂1xiûi

= β̂0 ∑n
i=1 ûi + β̂1 ∑n

i=1 xiûi

= 0

because ∑n
i=1 ûi = 0 and ∑n

i=1 xiûi = 0.
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Multiple Regression Analysis
Goodness-of-Fit

Now we are going to prove that

SST = SSE + SSR,
n

∑
i=1

(yi − ȳ)2 =
n

∑
i=1

(ŷi − ȳ)2 +
n

∑
i=1

û2
i

Given that yi = ŷi + ûi, we have

n

∑
i=1

(yi − ȳ)2 =
n

∑
i=1

(ŷi + ûi − ȳ)2

=
n

∑
i=1

[(ŷi − ȳ) + ûi]
2

=
n

∑
i=1

[
(ŷi − ȳ)2 + û2

i + 2 (ŷi − ȳ) ûi

]
=

n

∑
i=1

(ŷi − ȳ)2 +
n

∑
i=1

û2
i +

n

∑
i=1

2 (ŷi − ȳ) ûi
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Multiple Regression Analysis
Goodness-of-Fit

Now notice that

n

∑
i=1

2 (ŷi − ȳ) ûi = 2
n

∑
i=1

(ŷi − ȳ) ûi

= 2
n

∑
i=1

(ŷiûi − ȳûi)

= 2

(
n

∑
i=1

ŷiûi −
n

∑
i=1

ȳûi

)

= 2

(
n

∑
i=1

ŷiûi − ȳ
n

∑
i=1

ûi

)
= 0

because ∑n
i=1 ŷiûi = 0 and ∑n

i=1 ûi = 0.
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Multiple Regression Analysis
Goodness-of-Fit

Can compute the fraction of the total sum of squares (SST) that is
explained by the model, call this the R-squared of regression:

R2 = SSE/SST = 1 − SSR/SST,

where

SST = ∑n
i=1 (yi − ȳ)2 , SSE = ∑n

i=1 (ŷi − ȳ)2 , SSR = ∑n
i=1 û2

i .

R2 is a measure of Goodness of fit: proportion of the variance of
the dependent variable that is explained by the model.
The R2 is called the coefficient of determination.
0 ≤ R2 ≤ 1.

It can be shown that R2 is equal to the squares of the correlation
between ŷ and y

R2 =
[∑n

i=1
(
ŷi − ŷ

)
(yi − ȳ)]2

∑n
i=1
(
ŷi − ŷ

)2
∑n

i=1 (yi − ȳ)2

(also valid for the simple regression model). It can also be shown that
ŷ = ȳ.
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Multiple Regression Analysis
More about R-squared

R2 can never decrease when another independent variable is
added to a regression, and usually will increase.
Because R2 will usually increase with the number of
independent variables, it is not a good way to compare models.
An alternative measure usually reported by any statistical
software is the adjusted R-squared:

R̄2 = 1 − SSR/(n − k − 1)
SST/(n − 1)

= 1 − (n − 1)
(n − k − 1)

(1 − R2).

R̄2 penalizes the number of regressors included.
However, R̄2, is not not between 0 and 1. In fact, it can be
negative.
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Multiple Regression Analysis
More about R-squared

Example: Regression of Wages on Education and Experience

Dependent valiable: Wages
Estimation Method: Ordinary Least Squares, sample size: 528

Regressors Estimates
Intercept −5.56732

Education 0.97685
Experience 0.10367

R2 = 0.209, R̄2 = 0.206
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Multiple Regression Analysis
Assumptions for Unbiasedness

Population model is linear in parameters:
y = β0 + β1x1 + β2x2 + . . . + βkxk + u.
We can use a random sample of size
n,{(xi1, xi2, . . . , xik, yi) : i = 1, 2, . . . , n}, from the population
model, so that the sample model is

yi = β0 + β1xi1 + β2xi2 + . . . + βkxik + ui.

E(u|x1, x2, . . . xk) = 0, implying that all of the explanatory
variables are exogenous.
None of the x’s is constant, and there are no exact linear
relationships among them (no perfect multicolinearity).

Proposition

Under the above assumptions the OLS estimators for β0, β1, ...βk are
unbiased, that is

E
(

β̂j

)
= βj, j = 1, ..., k.

(prove this result in the simple regression model).
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Multiple Regression Analysis
Unbiasedness

Proof:
Recall that in the simple regression model we had

β̂0 = ȳ − β̂1x̄,

β̂1 =
∑n

i=1 (xi − x̄) (yi − ȳ)

∑n
i=1 (xi − x̄)2 ,

We proved before that ∑n
i=1 (xi − x̄)2 = ∑n

i=1 (xi − x̄) xi.
We prove now that ∑n

i=1 (xi − x̄) (yi − ȳ) = ∑n
i=1 (xi − x̄) yi.

Notice that

∑n
i=1 (xi − x̄) (yi − ȳ) = ∑n

i=1 [(xi − x̄) yi − (xi − x̄) ȳ]

= ∑n
i=1 (xi − x̄) yi − ∑n

i=1 (xi − x̄) ȳ

= ∑n
i=1 (xi − x̄) yi − ȳ ∑n

i=1 (xi − x̄)

= ∑n
i=1 (xi − x̄) yi

because, as we proved before, ∑n
i=1 (xi − x̄) = 0.
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Multiple Regression Analysis
Unbiasedness

Therefore

β̂1 =
∑n

i=1 (xi − x̄) yi

∑n
i=1 (xi − x̄) xi

Recall that in the simple regression model we have

yi = β0 + β1xi + ui, i = 1, ..., n
E (ui|xi) = 0.

We have to prove that E
(

β̂1
)
= β1 and E

(
β̂0
)
= β0

Write x̃ = (x1, x2, ..., xn), therefore by the law of iterated expectations
we have

E
(

β̂1
)
= E

(
E
(

β̂1|x̃
))
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Multiple Regression Analysis
Unbiasedness

Now

E
(

β̂1|x̃
)

= E
(

∑n
i=1 (xi − x̄) yi

∑n
i=1 (xi − x̄) xi

|x̃
)

=
1

∑n
i=1 (xi − x̄) xi

E
(
∑n

i=1 (xi − x̄) yi|x̃
)

=
1

∑n
i=1 (xi − x̄) xi

∑n
i=1 E ((xi − x̄) yi|x̃)

=
1

∑n
i=1 (xi − x̄) xi

∑n
i=1 (xi − x̄)E (yi|x̃)

and E (yi|x̃) = E (yi|x1, x2, ..., xi, ..., xn) = E (yi|xi) because yi is
independent from xj for j ̸= i as we assumed that we use a random
sample {(xi, yi)}n

i=1
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Multiple Regression Analysis
Unbiasedness

Now notice that E (yi|xi) = β0 + β1xi, therefore

E
(

β̂1|x̃
)

=
1

∑n
i=1 (xi − x̄) xi

∑n
i=1 (xi − x̄) (β0 + β1xi)

=
∑n

i=1 (xi − x̄) β0 + ∑n
i=1 (xi − x̄) β1xi

∑n
i=1 (xi − x̄) xi

=
β0 ∑n

i=1 (xi − x̄) + β1 ∑n
i=1 (xi − x̄) xi

∑n
i=1 (xi − x̄) xi

=
β1 ∑n

i=1 (xi − x̄) xi

∑n
i=1 (xi − x̄) xi

= β1

therefore

E
(

β̂1
)

= E
(
E
(

β̂1|x̃
))

= E (β1)

= β1
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Multiple Regression Analysis
Unbiasedness

Concerning the estimator of the intercept parameter notice that, by
the law of iterated expectations, we have

E
(

β̂0
)
= E

(
E
(

β̂0|x̃
))

Also

E
(

β̂0|x̃
)

= E
(
ȳ − β̂1x̄|x̃

)
= E (ȳ|x̃)− E

(
β̂1x̄|x̃

)
= E (ȳ|x̃)− E

(
β̂1|x̃

)
x̄
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Multiple Regression Analysis
Unbiasedness

E (ȳ|x̃) = E
(

1
n ∑n

i=1 yi|x̃
)

=
1
n ∑n

i=1 E (yi|x̃)

=
1
n ∑n

i=1 (β0 + β1xi)

=
1
n ∑n

i=1 β0 +
1
n ∑n

i=1 β1xi

=
1
n

β0 + β0 + ... + β0︸ ︷︷ ︸
×n

+ β1
1
n ∑n

i=1 xi

=
n
n

β0 + β1x̄

= β0 + β1x̄
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Multiple Regression Analysis
Unbiasedness

Therefore

E
(

β̂0|x̃
)

= β0 + β1x̄ − β1x̄
= β0

therefore

E
(

β̂0
)

= E
(
E
(

β̂0|x̃
))

= E (β0)

= β0
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Multiple Regression Analysis
Too Many or Too Few Variables

What happens if we include variables in our specification that
don’t belong?
There is no effect on our parameter estimate, and OLS remains
unbiased.
What if we exclude a variable from our specification that does
belong?
OLS will usually be biased.
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Multiple Regression Analysis
Too Many or Too Few Variables

Suppose that we know that the model is

y = β0 + β1x1 + β2x2 + u

where E(u|x1, x2) = 0 but we estimate ỹ = β̃0 + β̃1x1.
As it was shown before

β̃1 =
∑n

i=1 (xi1 − x̄1) yi

∑n
i=1 (xi1 − x̄1)

2 .

Then conditional on the regressors

E
(

β̃1
)

= β1 + β2
∑n

i=1 (xi1 − x̄1) xi2

∑n
i=1 (xi1 − x̄1)

2

= β1 + β2
∑n

i=1 (xi1 − x̄1) (xi2 − x̄2)

∑n
i=1 (xi1 − x̄1)

2

as we can show that
∑n

i=1 (xi1 − x̄1) xi2 = ∑n
i=1 (xi1 − x̄1) (xi2 − x̄2) .
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Multiple Regression Analysis
Too Many or Too Few Variables

Thus

E
(

β̃1
)

= β1 + β2
∑n

i=1 (xi1 − x̄1) (xi2 − x̄2)

∑n
i=1 (xi1 − x̄1)

2

= β1 + β2

1
n−1 ∑n

i=1 (xi1 − x̄1) (xi2 − x̄2)
1

n−1 ∑n
i=1 (xi1 − x̄1)

2

= β1 + β2
Sx1,x2

S2
x1

.

where Sx1,x2 is the sample covariance between x1 and x2 and S2
x1

is the sample variance of x1.
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Multiple Regression Analysis
Too Many or Too Few Variables

E
(

β̃1
)

= β1 + β2
Sx1,x2

S2
x1

= β1 + β2
Sx1,x2

Sx2Sx1

Sx2

Sx1

= β1 + β2Corr(x1, x2)
Sx2

Sx1

.

Summary of Direction of Bias
Corr(x1, x2) > 0 Corr(x1, x2) < 0

β2 > 0 Positive Bias Negative Bias
β2 < 0 Negative Bias Positive Bias
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Multiple Regression Analysis
Omitted Variable Bias Summary

Two cases where bias is equal to zero:
β2 = 0, that is x2 doesn’t really belong in model.
x1 and x2 are uncorrelated in the sample.

If corr(x2, x1) and β2 have the same sign, bias will be positive.
If corr(x2, x1) and β2 have the opposite sign, bias will be negative.
The More General Case: Technically, can only obtain the sign of
the bias for the more general case if all of the included x’s are
uncorrelated.
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Multiple Regression Analysis
Variance of the OLS Estimators

The Variance-covariance matrix of the OLS estimator
(

β̂0, β̂1, ..., β̂k
)

has the form:
Var

(
β̂0
)

Cov(β̂0, β̂1) ... Cov(β̂0, β̂k)
Cov(β̂0, β̂1) Var

(
β̂1
)

... Cov(β̂1, β̂k)
...

...
...

...
Cov(β̂0, β̂k) Cov(β̂1, β̂k) ... Var

(
β̂k
)


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Multiple Regression Analysis
Variance of the OLS Estimators

Let x stand for (x1, x2, . . . xk).
Assume Var(u|x) = σ2 (Homoskedasticity).
Assuming that Var(u|x) = σ2 also implies that Var(y|x) = σ2.
The 4 assumptions for unbiasedness, plus this homoskedasticity
assumption are known as the Gauss-Markov assumptions.
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Multiple Regression Analysis
Variance of the OLS Estimators

Given the Gauss-Markov Assumptions

Var(β̂j) =
σ2

SSTj

(
1 − R2

j

) ,

where the SSTj = ∑n
i=1
(
xij − x̄j

)2 and R2
j is the R2 from the regressing

xj on all other x′s.
Components of OLS Variances:

The error variance: a larger σ2 implies a larger variance for the
OLS estimators.
The total sample variation: a larger SSTj implies a smaller
variance for the estimators.
Linear relationships among the independent variables: a larger
R2

j implies a larger variance for the estimators.
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