Econometrics

Multiple Regression Analysis: Estimation. Wooldridge (2013), Chapter 3

- Ordinary Least Squares (OLS) Estimator
- Interpreting Multiple Regression
- A "Partialling Out" Interpretation of the OLS estimator -Frisch-Waugh (1933) Theorem
- Simple vs Multiple Regression Estimate
- The R-squared
- Unbiasedness of the OLS estimator
- Too Many or Too Few Variables
- Variance of the OLS Estimators

Multiple Regression Analysis

The Multiple Regression model takes the form

$$
E\left(y \mid x_{1}, \ldots, x_{k}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}
$$

or equivalently

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

where $E\left(u \mid x_{1}, \ldots, x_{k}\right)=0$.
Parallels with Simple Regression:

- y is the dependent variable (regressand).
- x_{1}, \ldots, x_{k} are the k regressors.
- u is still the error term (or disturbance).
- β_{0} is still the intercept.
- β_{1} to β_{k} all called slope parameters.

Multiple Regression Analysis

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u,
$$

where $E\left(u \mid x_{1}, \ldots, x_{k}\right)=0$.

Examples:

- y-sales, the regressors are advertising expenditure, income, price relative to competitors.
- y - personal consumption, the regressors are disposable income, wealth, interest rates.
- y - Investment, the regressors are interest rates and profits (past and future).
- y - Wages, the regressors are schooling, experience, ability and gender.

Multiple Regression Analysis

Ordinary Least Squares (OLS) Estimator

To estimate $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}$ we choose $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}$ that minimize

$$
\mathcal{S}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)^{2}
$$

The first order conditions are

$$
\begin{aligned}
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right) & =0 \\
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right) x_{i j} & =0 \\
j & =1, \ldots, k
\end{aligned}
$$

- This is a system of equations with $k+1$ equations and $k+1$ variables: $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}$. The Ordinary Least Squares estimator is obtained by solving the system of equations for $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}$.

Multiple Regression Analysis

Ordinary Least Squares (OLS) Estimator

The first order conditions can be written as

$$
\begin{align*}
-\frac{2}{n} \sum_{i=1}^{n} \hat{u}_{i} & =0 \tag{1}\\
-\frac{2}{n} \sum_{i=1}^{n} \hat{u}_{i} x_{i j} & =0 \tag{2}\\
j & =1, \ldots, k
\end{align*}
$$

where $\hat{u}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}$.(residuals)
Remarks:

- Beyond the two-variable case it is not possible to write out an explicit formula for the OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}$ (without the use of matrix algebra), although a solution exists.
- Equation (1) implies that the sum and the mean of the residuals are zero.
- Equations (1) and (2) imply that the covariances between the residuals and each regressor are zero.

Multiple Regression Analysis

Interpreting Multiple Regression

The OLS regression line (fitted values) is now defined as

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\ldots+\hat{\beta}_{k} x_{k} .
$$

Writing it in terms of changes we obtain

$$
\Delta \hat{y}=\hat{\beta}_{1} \Delta x_{1}+\hat{\beta}_{2} \Delta x_{2}+\ldots+\hat{\beta}_{k} \Delta x_{k} .
$$

Holding $x_{i}, i=1, \ldots k$ and $i \neq j$ fixed implies that

$$
\Delta \hat{y}=\hat{\beta}_{j} \Delta x_{j},
$$

$j=1, \ldots, k$. Thus each β has a ceteris paribus interpretation.

Multiple Regression Analysis

A Note on Terminology

- In most cases, we will indicate the estimation of a relationship through OLS by writing as

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\ldots+\hat{\beta}_{k} x_{k} \tag{3}
\end{equation*}
$$

- Sometimes, for the sake of brevity, it is useful to indicate that an OLS regression has been run without actually writing out the equation.
- We will often indicate that equation (3) has been obtained by OLS in saying that we run the regression of y on $x_{1}, x_{2}, \ldots, x_{k}$

Multiple Regression Analysis

Interpreting Multiple Regression

- Regression of Wages on years of Education and years of Work Experience:
Dependent variable: Wages
Estimation Method: Ordinary Least

Regressors	Estimates
Intercept	-5.56732
Education	0.97685
Experience	0.10367

- Another year of Education is predicted to increase the mean of wages by $\$ 0.97685$, holding Experience fixed.
- Another year of Experience is predicted to increase the mean of wages by $\$ 0.10367$, holding Education fixed.

Multiple Regression Analysis: Estimation

A "Partialling Out" Interpretation - Frisch-Waugh (1933) Theorem

Consider the case $k=2$, i.e.

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2} .
$$

There is an interesting interpretation for $\hat{\beta}_{1}$:

- Let $\hat{r}_{i 1}$ be the residuals from the regression of x_{1} on x_{2}. The fitted values are $\hat{x}_{1}=\hat{\gamma}_{0}+\hat{\gamma}_{2} x_{2}$.
- Notice that for $i=1, \ldots, n$

$$
x_{i 1}=\underbrace{\hat{x}_{i 1}}_{\begin{array}{c}
\text { part of } x_{1} \text { that can } \\
\text { be explained by } x_{2}
\end{array}}+\underbrace{\hat{r}_{i 1}}_{\begin{array}{c}
\text { part of } x_{1} \text { that cannot } \\
\text { be explained by } x_{2}
\end{array}}
$$

- It can be shown that the OLS estimator for $\beta_{1}, \hat{\beta}_{1}$, is equal to the estimator of the slope when we run a regression of y_{i} on $\hat{r}_{i 1}$. That is

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \hat{r}_{i 1} y_{i}}{\sum_{i=1}^{n} \hat{r}_{i 1}^{2}} .
$$

Multiple Regression Analysis: Estimation

A "Partialling Out" Interpretation - Frisch-Waugh (1933) Theorem

- It can be shown that the OLS estimator for $\beta_{1}, \hat{\beta}_{1}$, is equal to the estimator of the slope when we run a regression of y_{i} on $\hat{r}_{i 1}$. That is

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \hat{r}_{i 1} y_{i}}{\sum_{i=1}^{n} \hat{r}_{i 1}^{2}}
$$

- What is the interpretation of this?
- We're estimating the effect of x_{1} on y after removing from x_{1} the effect of x_{2}.

Multiple Regression Analysis

Simple vs Multiple Regression Estimate

Compare the simple regression

$$
\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}
$$

with the multiple regression

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2} .
$$

Generally $\tilde{\beta}_{1} \neq \hat{\beta}_{1}$ unless $\hat{\beta}_{2}=0$ (i.e. no partial effect of x_{2}) or x_{1} and x_{2} are uncorrelated in the sample.

Multiple Regression Analysis

Simple vs Multiple Regression Estimate

Example:

- Regression of Wages on Education

Dependent valiable: Wages
Estimation Method: Ordinary Least Squares, sample size: 528

Regressors	Estimates
Intercept	-1.60468
Education	0.81395

- Regression of Wages on Education and Experience

Dependent valiable: Wages
Estimation Method: Ordinary Least Squares, sample size: 528

Regressors	Estimates
Intercept	-5.56732
Education	0.97685
Experience	0.10367

Multiple Regression Analysis

Goodness-of-Fit

As in the simple regression model we can think of each observation as being made up of an explained part, and an unexplained part, $y_{i}=\hat{y}_{i}+\hat{u}_{i}$.
We then define the following:

- $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ is the total sum of squares (SST).
- $\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ is the explained sum of squares (SSE).
- $\sum_{i=1}^{n} \hat{u}_{i}^{2}$ is the residual sum of squares (SSR).
(Same definitions as in the linear regression model) Then

$$
S S T=S S E+S S R .
$$

Prove this result in the simple regression model!

Multiple Regression Analysis

Goodness-of-Fit

Proof:

Recall that in the simple regression model we had

$$
\begin{array}{r}
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
\frac{1}{n} \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0
\end{array}
$$

But since $\hat{u}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}$, we have

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i} & =0, \\
\frac{1}{n} \sum_{i=1}^{n} x_{i} \hat{u}_{i} & =0 .
\end{aligned}
$$

Multiple Regression Analysis

Goodness-of-Fit

By definition, we have

$$
\begin{aligned}
\hat{u}_{i} & =y_{i}-\hat{y}_{i} \\
y_{i} & =\hat{y}_{i}+\hat{u}_{i} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{1}{n} \sum_{i=1}^{n} \hat{y}_{i}+\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i} \\
& =\frac{1}{n} \sum_{i=1}^{n} \hat{y}_{i}=\overline{\hat{y}}
\end{aligned}
$$

because $\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}=0$ and $\hat{\hat{y}}$ is the average of the fitted values.

Multiple Regression Analysis

Goodness-of-Fit

We prove now that

$$
\sum_{i=1}^{n} \hat{u}_{i} \hat{y}_{i}=0 .
$$

Notice that $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$, therefore

$$
\begin{aligned}
\sum_{i=1}^{n} \hat{u}_{i}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right) & =\sum_{i=1}^{n}\left(\hat{\beta}_{0} \hat{u}_{i}+\hat{\beta}_{1} x_{i} \hat{u}_{i}\right) \\
& =\sum_{i=1}^{n} \hat{\beta}_{0} \hat{u}_{i}+\sum_{i=1}^{n} \hat{\beta}_{1} x_{i} \hat{u}_{i} \\
& =\hat{\beta}_{0} \sum_{i=1}^{n} \hat{u}_{i}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i} \hat{u}_{i} \\
& =0
\end{aligned}
$$

because $\sum_{i=1}^{n} \hat{u}_{i}=0$ and $\sum_{i=1}^{n} x_{i} \hat{u}_{i}=0$.

Multiple Regression Analysis

Goodness-of-Fit

Now we are going to prove that

$$
\begin{aligned}
S S T & =\text { SSE }+ \text { SSR, } \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n} \hat{u}_{i}^{2}
\end{aligned}
$$

Given that $y_{i}=\hat{y}_{i}+\hat{u}_{i}$, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left(\hat{y}_{i}+\hat{u}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n}\left[\left(\hat{y}_{i}-\bar{y}\right)+\hat{u}_{i}\right]^{2} \\
& =\sum_{i=1}^{n}\left[\left(\hat{y}_{i}-\bar{y}\right)^{2}+\hat{u}_{i}^{2}+2\left(\hat{y}_{i}-\bar{y}\right) \hat{u}_{i}\right] \\
& =\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n} 2\left(\hat{y}_{i}-\bar{y}\right) \hat{u}_{i}
\end{aligned}
$$

Multiple Regression Analysis

Goodness-of-Fit

Now notice that

$$
\begin{aligned}
\sum_{i=1}^{n} 2\left(\hat{y}_{i}-\bar{y}\right) \hat{u}_{i} & =2 \sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right) \hat{u}_{i} \\
& =2 \sum_{i=1}^{n}\left(\hat{y}_{i} \hat{u}_{i}-\bar{y} \hat{u}_{i}\right) \\
& =2\left(\sum_{i=1}^{n} \hat{y}_{i} \hat{u}_{i}-\sum_{i=1}^{n} \bar{y} \hat{u}_{i}\right) \\
& =2\left(\sum_{i=1}^{n} \hat{y}_{i} \hat{u}_{i}-\bar{y} \sum_{i=1}^{n} \hat{u}_{i}\right) \\
& =0
\end{aligned}
$$

because $\sum_{i=1}^{n} \hat{y}_{i} \hat{u}_{i}=0$ and $\sum_{i=1}^{n} \hat{u}_{i}=0$.

Multiple Regression Analysis

Goodness-of-Fit

- Can compute the fraction of the total sum of squares (SST) that is explained by the model, call this the R-squared of regression:

$$
R^{2}=S S E / S S T=1-S S R / S S T
$$

where

$$
S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}, \quad S S E=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}, \quad S S R=\sum_{i=1}^{n} \hat{u}_{i}^{2} .
$$

- R^{2} is a measure of Goodness of fit: proportion of the variance of the dependent variable that is explained by the model.
- The R^{2} is called the coefficient of determination.
- $0 \leq R^{2} \leq 1$.

It can be shown that R^{2} is equal to the squares of the correlation between \hat{y} and y

$$
R^{2}=\frac{\left[\sum_{i=1}^{n}\left(\hat{y}_{i}-\overline{\hat{y}}\right)\left(y_{i}-\bar{y}\right)\right]^{2}}{\sum_{i=1}^{n}\left(\hat{y}_{i}-\overline{\hat{y}}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

(also valid for the simple regression model). It can also be shown that $\overline{\hat{y}}=\bar{y}$.

Multiple Regression Analysis

More about R-squared

- R^{2} can never decrease when another independent variable is added to a regression, and usually will increase.
- Because R^{2} will usually increase with the number of independent variables, it is not a good way to compare models.
- An alternative measure usually reported by any statistical software is the adjusted R-squared:

$$
\begin{aligned}
\bar{R}^{2} & =1-\frac{S S R /(n-k-1)}{\operatorname{SST} /(n-1)} \\
& =1-\frac{(n-1)}{(n-k-1)}\left(1-R^{2}\right)
\end{aligned}
$$

- \bar{R}^{2} penalizes the number of regressors included.
- However, \bar{R}^{2}, is not not between 0 and 1 . In fact, it can be negative.

Multiple Regression Analysis

More about R-squared

Example: Regression of Wages on Education and Experience

Dependent valiable: Wages
Estimation Method: Ordinary Least Squares, sample size: 528

Regressors	Estimates
Intercept	-5.56732
Education	0.97685
Experience	0.10367
$R^{2}=0.209$	
$\bar{R}^{2}=0.206$	

Multiple Regression Analysis

Assumptions for Unbiasedness

- Population model is linear in parameters:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

- We can use a random sample of size $n,\left\{\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}, y_{i}\right): i=1,2, \ldots, n\right\}$, from the population model, so that the sample model is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+u_{i} .
$$

- $E\left(u \mid x_{1}, x_{2}, \ldots x_{k}\right)=0$, implying that all of the explanatory variables are exogenous.
- None of the x^{\prime} s is constant, and there are no exact linear relationships among them (no perfect multicolinearity).

Proposition

Under the above assumptions the OLS estimators for $\beta_{0}, \beta_{1}, \ldots \beta_{k}$ are unbiased, that is

$$
E\left(\widehat{\beta}_{j}\right)=\beta_{j}, j=1, \ldots, k
$$

(prove this result in the simple regression model).

Multiple Regression Analysis

Unbiasedness

Proof:

Recall that in the simple regression model we had

$$
\begin{aligned}
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \\
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

We proved before that $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}$.
We prove now that $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}$.
Notice that

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right) y_{i}-\left(x_{i}-\bar{x}\right) \bar{y}\right] \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \bar{y} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}
\end{aligned}
$$

because, as we proved before, $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$.

Multiple Regression Analysis

Unbiasedness

Therefore

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}
$$

Recall that in the simple regression model we have

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{i}+u_{i}, i=1, \ldots, n \\
E\left(u_{i} \mid x_{i}\right) & =0 .
\end{aligned}
$$

We have to prove that $E\left(\hat{\beta}_{1}\right)=\beta_{1}$ and $E\left(\hat{\beta}_{0}\right)=\beta_{0}$
Write $\tilde{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, therefore by the law of iterated expectations we have

$$
E\left(\hat{\beta}_{1}\right)=E\left(E\left(\hat{\beta}_{1} \mid \tilde{x}\right)\right)
$$

Multiple Regression Analysis

Unbiasedness

Now

$$
\begin{aligned}
E\left(\hat{\beta}_{1} \mid \tilde{x}\right) & =E\left(\left.\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \right\rvert\, \tilde{x}\right) \\
& =\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} E\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i} \mid \tilde{x}\right) \\
& =\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \sum_{i=1}^{n} E\left(\left(x_{i}-\bar{x}\right) y_{i} \mid \tilde{x}\right) \\
& =\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) E\left(y_{i} \mid \tilde{x}\right)
\end{aligned}
$$

and $E\left(y_{i} \mid \tilde{x}\right)=E\left(y_{i} \mid x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)=E\left(y_{i} \mid x_{i}\right)$ because y_{i} is independent from x_{j} for $j \neq i$ as we assumed that we use a random sample $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

Multiple Regression Analysis

Unbiasedness

Now notice that $E\left(y_{i} \mid x_{i}\right)=\beta_{0}+\beta_{1} x_{i}$, therefore

$$
\begin{aligned}
E\left(\hat{\beta}_{1} \mid \tilde{x}\right) & =\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}\right) \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \beta_{0}+\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \beta_{1} x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \\
& =\frac{\beta_{0} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \\
& =\frac{\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \\
& =\beta_{1}
\end{aligned}
$$

therefore

$$
\begin{aligned}
E\left(\hat{\beta}_{1}\right) & =E\left(E\left(\hat{\beta}_{1} \mid \tilde{x}\right)\right) \\
& =E\left(\beta_{1}\right) \\
& =\beta_{1}
\end{aligned}
$$

Multiple Regression Analysis

Unbiasedness

Concerning the estimator of the intercept parameter notice that, by the law of iterated expectations, we have

$$
E\left(\hat{\beta}_{0}\right)=E\left(E\left(\hat{\beta}_{0} \mid \tilde{x}\right)\right)
$$

Also

$$
\begin{aligned}
E\left(\hat{\beta}_{0} \mid \tilde{x}\right) & =E\left(\bar{y}-\hat{\beta}_{1} \bar{x} \mid \tilde{x}\right) \\
& =E(\bar{y} \mid \tilde{x})-E\left(\hat{\beta}_{1} \bar{x} \mid \tilde{x}\right) \\
& =E(\bar{y} \mid \tilde{x})-E\left(\hat{\beta}_{1} \mid \tilde{x}\right) \bar{x}
\end{aligned}
$$

Multiple Regression Analysis

Unbiasedness

$$
\begin{aligned}
E(\bar{y} \mid \tilde{x}) & =E\left(\left.\frac{1}{n} \sum_{i=1}^{n} y_{i} \right\rvert\, \tilde{x}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(y_{i} \mid \tilde{x}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\beta_{0}+\beta_{1} x_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \beta_{0}+\frac{1}{n} \sum_{i=1}^{n} \beta_{1} x_{i} \\
& =\frac{1}{n}(\underbrace{\beta_{0}+\beta_{0}+\ldots+\beta_{0}}_{\times n})+\beta_{1} \frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& =\frac{n}{n} \beta_{0}+\beta_{1} \bar{x} \\
& =\beta_{0}+\beta_{1} \bar{x}
\end{aligned}
$$

Multiple Regression Analysis

Unbiasedness

Therefore

$$
\begin{aligned}
E\left(\hat{\beta}_{0} \mid \tilde{x}\right) & =\beta_{0}+\beta_{1} \bar{x}-\beta_{1} \bar{x} \\
& =\beta_{0}
\end{aligned}
$$

therefore

$$
\begin{aligned}
E\left(\hat{\beta}_{0}\right) & =E\left(E\left(\hat{\beta}_{0} \mid \tilde{x}\right)\right) \\
& =E\left(\beta_{0}\right) \\
& =\beta_{0}
\end{aligned}
$$

Multiple Regression Analysis

Too Many or Too Few Variables

- What happens if we include variables in our specification that don't belong?
- There is no effect on our parameter estimate, and OLS remains unbiased.
- What if we exclude a variable from our specification that does belong?
- OLS will usually be biased.

Multiple Regression Analysis

Too Many or Too Few Variables

Suppose that we know that the model is

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

where $E\left(u \mid x_{1}, x_{2}\right)=0$ but we estimate $\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}$.

- As it was shown before

$$
\tilde{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}
$$

- Then conditional on the regressors

$$
\begin{aligned}
E\left(\tilde{\beta}_{1}\right) & =\beta_{1}+\beta_{2} \frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) x_{i 2}}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}} \\
& =\beta_{1}+\beta_{2} \frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}}
\end{aligned}
$$

as we can show that

$$
\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right) x_{i 2}=\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)
$$

Multiple Regression Analysis

Too Many or Too Few Variables

- Thus

$$
\begin{aligned}
E\left(\tilde{\beta}_{1}\right) & =\beta_{1}+\beta_{2} \frac{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)}{\sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}} \\
& =\beta_{1}+\beta_{2} \frac{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right)}{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i 1}-\bar{x}_{1}\right)^{2}} \\
& =\beta_{1}+\beta_{2} \frac{S_{x_{1}, x_{2}}^{S_{x_{1}}} .}{}
\end{aligned}
$$

where $S_{x_{1}, x_{2}}$ is the sample covariance between x_{1} and x_{2} and $S_{x_{1}}^{2}$ is the sample variance of x_{1}.

Multiple Regression Analysis

Too Many or Too Few Variables

$$
\begin{aligned}
E\left(\tilde{\beta}_{1}\right) & =\beta_{1}+\beta_{2} \frac{S_{x_{1}, x_{2}}}{S_{x_{1}}^{2}} \\
& =\beta_{1}+\beta_{2} \frac{S_{x_{1}, x_{2}}}{S_{x_{2}} S_{x_{1}}} \frac{S_{x_{2}}}{S_{x_{1}}} \\
& =\beta_{1}+\beta_{2} \operatorname{Corr}\left(x_{1}, x_{2}\right) \frac{S_{x_{2}}}{S_{x_{1}}} .
\end{aligned}
$$

Summary of Direction of Bias

	$\operatorname{Corr}\left(x_{1}, x_{2}\right)>0$	$\operatorname{Corr}\left(x_{1}, x_{2}\right)<0$
$\beta_{2}>0$	Positive Bias	Negative Bias
$\beta_{2}<0$	Negative Bias	Positive Bias

Multiple Regression Analysis

Omitted Variable Bias Summary

- Two cases where bias is equal to zero:
- $\beta_{2}=0$, that is x_{2} doesn't really belong in model.
- x_{1} and x_{2} are uncorrelated in the sample.
- If $\operatorname{corr}\left(x_{2}, x_{1}\right)$ and β_{2} have the same sign, bias will be positive.
- If $\operatorname{corr}\left(x_{2}, x_{1}\right)$ and β_{2} have the opposite sign, bias will be negative.
- The More General Case: Technically, can only obtain the sign of the bias for the more general case if all of the included x^{\prime} s are uncorrelated.

Multiple Regression Analysis

Variance of the OLS Estimators

The Variance-covariance matrix of the OLS estimator $\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}\right)$ has the form:

$$
\left[\begin{array}{cccc}
\operatorname{Var}\left(\hat{\beta}_{0}\right) & \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & \ldots & \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{k}\right) \\
\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & \operatorname{Var}\left(\hat{\beta}_{1}\right) & \ldots & \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{k}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{k}\right) & \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{k}\right) & \ldots & \operatorname{Var}\left(\hat{\beta}_{k}\right)
\end{array}\right]
$$

Multiple Regression Analysis

Variance of the OLS Estimators

- Let \mathbf{x} stand for $\left(x_{1}, x_{2}, \ldots x_{k}\right)$.
- Assume $\operatorname{Var}(u \mid \mathbf{x})=\sigma^{2}$ (Homoskedasticity).
- Assuming that $\operatorname{Var}(u \mid \mathbf{x})=\sigma^{2}$ also implies that $\operatorname{Var}(y \mid \mathbf{x})=\sigma^{2}$.
- The 4 assumptions for unbiasedness, plus this homoskedasticity assumption are known as the Gauss-Markov assumptions.

Multiple Regression Analysis

Variance of the OLS Estimators

Given the Gauss-Markov Assumptions

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{j}\left(1-R_{j}^{2}\right)^{2}}
$$

where the $S S T_{j}=\sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}$ and R_{j}^{2} is the R^{2} from the regressing x_{j} on all other x^{\prime} s.
Components of OLS Variances:

- The error variance: a larger σ^{2} implies a larger variance for the OLS estimators.
- The total sample variation: a larger $S S T_{j}$ implies a smaller variance for the estimators.
- Linear relationships among the independent variables: a larger R_{j}^{2} implies a larger variance for the estimators.

